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We consider aspects of the population dynamics, inside a bound domain, of diffusing agents carrying an
attribute which is stochastically destroyed upon contact with the boundary. The normal mode analysis of the
relevant Helmholtz equation under the partially absorbing, but uniform, boundary condition provides a starting
framework in understanding detailed evolution dynamics of the attribute in the time domain. In particular, the
boundary-localized depletion has been widely employed in practical applications that depend on geometry of
various porous media such as rocks, cement, bones, and cheese. While direct relationship between the pore
geometry and the diffusion-relaxation spectrum forms the basis for such applications and has been extensively
studied, relatively less attention has been paid to the spatial variation in the boundary condition. In this work,
we focus on the way the pore geometry and the inhomogeneous depletion strength of the boundary become
intertwined and thus obscure the direct relationship between the spectrum and the geometry. It is often impos-
sible to gauge experimentally the degree to which such interference occurs. We fill this gap by perturbatively
incorporating classes of spatially varying boundary conditions and derive their consequences that are observ-
able through numerical simulations or controlled experiments on glass bead packs and artificially fabricated
porous media. We identify features of the spectrum that are most sensitive to the inhomogeneity, apply the
method to the spherical pore with a simple hemispherical binary distribution of the depletion strength, and
obtain bounds for the induced change in the slowest relaxation mode.
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I. INTRODUCTION

We consider the evolution of a physical attribute carried
by a population of random walkers inside a medium bound
by a wall of general shape. When a walker hits the boundary,
the encounter depletes its attribute with a certain probability,
p� �0,1�. Our main concern here is on allowing this prob-
ability to have general spatial variation and to investigate its
consequences on the spatiotemporal evolution of the local
attribute density ��r , t� and its net sum, M�t���dr��r , t�.
Without the spatial variations in p and the local diffusivity,
D, the problem reduces to the classic Helmholtz equation
with a uniform Robin’s boundary condition, bookended by
the Dirchlet �p→�� on one limit and by the Neumann con-
dition �p→0� on the other. The spectral analysis of its eigen-
modes has been discussed as a probe of geometrical proper-
ties of the boundary �1–3� and found application for a variety
of systems such as the electrode impedance �4�, acoustics
�5�, NMR relaxometry �6,7�, nuclear level statistics �8�,
quantum chaos �9�, and migration of cultural or genetic trait
�10–12�. Population evolution of the web crawler programs
�13� deployed over a large network in the presence of un-
stable nodes may be an example where the diffusion may not
necessarily be bound to the physical space.

To be concrete, we are directly motivated by issues en-
countered in the interpretation of the magnetic resonance
�MR� probe of fluid in conventional porous media �14,15�,
suspended particulate aggregates, and colloids �16–18�. The
diffusion-relaxation dynamics of polarized proton spins car-
ried by diffusing molecules has been widely exploited, some-

times without full justification, to characterize the pore ge-
ometry and fluid viscosity in the soil �19,20�, cements �21�,
oil pigment of old paintings �22�, biological tissues �23�,
fiber bundles �24�, plant cells �25�, or a piece of cheese �26�.
In its geophysical or oil-field application, the interface-
enhanced relaxation is used as a probe for the pore geometry
of rocks �15,27,28�, composition of pore filling fluids �29�,
and even wetting conditions. This extraordinary utility de-
rives from the basic observation that the interface-enhanced
relaxation rate �widely called T2 distribution �15�� is directly
proportional to the surface-to-volume ratio of the pore enclo-
sure when certain conditions are met �see Eqs. �1� and �2�
below�.

Three basic conditions are required to be met implicitly in
such a mapping between the relaxation spectrum and the
pore-size distribution: first, the porous medium is pictured as
an aggregation of isolated pores, which allows an unambigu-
ous notion of the pore size if individual pores are of simple
geometry. This may not necessarily require each pore to be
closed. A periodic symmetric arrangement of pore space �30�
connected by narrow channels may well be considered as
such as long as the interpore diffusive flux either balances
out or becomes negligible. Attempts to map between the pore
size and the surface-enhanced T2 distributions may work
very well for systems such as the monodisperse bead packs,
the food elements composed of suspended spherical voids
such as cheese, and the class of sedimentary rocks such as
clean sandstones.

Second, in the absence of diffusive flux among such
pores, the so-called fast-diffusion condition is met so that the
relaxation spectrum is dominated by the slowest mode for
each pore, the rate for which becomes proportional to the
respective surface-to-volume ratio. For a simple isolated*sryu@slb.com
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spherical pore of radius a, for example, the condition in-
volves a single dimensionless parameter �31�

� � �0a/D � 1. �1�

The macroscopic parameter �0 characterizes the uniform
depletion rate at the interface, is directly related to the prob-
ability of depletion p, and enters Robin’s condition in the
form of �Dn̂ ·�+�0���r�=0 on the boundary with n̂ being
the unit vector normal to the interface. When this condition
prevails, it was noted �31� that the surface-induced depletion
rate ws �or so-called surface-enhanced T2 relaxation rate �15�
in the NMR context� is directly related to the surface
�S�-to-volume �V� ratio of the pore,

ws = �0

S
V . �2�

This simple relationship had been applied widely in ex-
amples mentioned above �15,19–28�. For classes of porous
media with a broad variation in its geometrical properties
and strong diffusive coupling among its pore constituents,
these assumptions may break down. For example, in the oil
exploration, problems have been long recognized for the
class of rocks in which the pore shape and the lithological
composition of the matrix become complex. The complica-
tions induced by the heterogeneous extended pore space in
MR as well as other physical properties such as the electrical
and hydraulic conductivity pose a fundamental challenge and
invite active debates. As we will show in Sec. III, this con-
dition is facilitated by the near uniformity of the slowest
eigenmode �see Eq. �22��. When the pore geometry has more
than one length scale �Eq. �15��, the slowest mode acquires
more pronounced spatial variation and the condition is rela-
tively poorly met.

The third assumption often made is that the surface relax-
ation occurs with a uniform strength �i.e., ��r�=�0� through-
out the interface even though an inhomogeneous � is the
norm, rather than an aberration, in natural media. In porous
rocks, there are several mechanisms for the surface-enhanced
relaxation �32–36�, and they often involve the stochastic dis-
tribution of magnetic minerals in the matrix or the local in-
terfacial morphology. The strength of � arising from such
origins would acquire inhomogeneity across the pore-grain
interface, but microscopic details of such a variation are not
known quantitatively in general.

Given the lack of such information, it is not entirely pos-
sible to dismiss the following observation: that for the popu-
lation evolution of a collection of isolated pores of varying
sizes, all satisfying the condition above �Eq. �1��, it is pos-
sible to construct a collection of identical pores whose size
amin is chosen such that �maxamin /D�1 but with a distribu-
tion of � values ���min ,�max� assigned to each, which will
yield the identical evolution. It is worth noting that the ques-
tion of whether there is a unique mapping between the
eigenspectrum and a given boundary geometry has been
posed in more abstract and stronger terms �1–3�. The hypo-
thetical situation for an NMR relaxometry as posed above
violates a weaker form of isospectral criterion as it involves
the behavior of the overall population decay �M�t�� obtained

under both the uniform initial distribution and detection sen-
sitivity profile �see Eq. �21� in the following� under the con-
dition ��1. Aside from mathematical rigor, questions arise
as to whether the direct mapping between the geometry and
the relaxation rates could remain useful for a general ��r�
profile. Figure 1 summarizes the core issues in the form of
the slowest mode profiles �casually rendered here for illus-
trative purpose� inside porous media with simple and mod-
erately complex shapes �panels �a� and �c��. They are then
further complicated by the presence of inhomogeneous ��r�
which is incommensurate with the variation in the boundary
shape �panels �b� and �d��.

Several authors had considered the effect of an inhomo-
geneous ��r�. Wilkinson et al. �37� incorporated the inhomo-
geneous � in a toy model in reduced dimensions. Kansal and
Torquato �18� considered a numerical technique to derive the
effective trapping rate for a mixture of partially absorbing
traps in the context of biological systems. Valfouskaya et al.
�38� considered a nonuniform absorption on randomly dis-
tributed sites in reconstructed porous media. Arns et al. �39�
used numerical simulations with a focus on the cross corre-
lation between the relaxation spectrum and the transport
property. While the latter touches directly on one of the im-
portant practical issues, it provides little insight beyond the
complications due to the pore-geometry issue �first and sec-
ond conditions� alone.

II. SETTING UP THE PROBLEM

This work is concerned with consequences of allowing
either of or all three assumptions above to break down. We
aim to develop a method that incorporates the two compo-
nents �geometry vs inhomogeneous �� on an equal footing.

FIG. 1. An artistic rendition of situations considered in the text.
Panel �a� shows a simple spherical pore with a uniform �0 �its
strength indicated on the shell with a uniform gray color�. Inside,
the color represents the local population density �white: high; black:
low� as evolved from a uniform initial distribution in the long time
limit. Panel �b� shows the same, but with a nonuniform ��r� on the
shell. Panel �c� shows a more complex pore geometry but with
uniform �. �d� shows the same with ��r� with a potential disruption
on the registry between the local density and its pore-geometrical
parameters.
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To be precise, consider a pore space �V denotes its pore
volume in the following� defined by the solid �grain�-pore
interface � and its area designated as S in a Euclidean space
of dimension de. A physical property �such as polarized spin�
is carried by molecules �or agents� diffusing through V with
its mobility characterized by the local diffusion tensor D�r�.
We allow such molecules to get absorbed �or killed� by a
certain mechanism at the boundary, if the property we are
tracking is their population density, or allow the physical
property to be drained upon contacting the interface with a
certain probability. The strength of such surface-localized
depletion mechanism is controlled by a parameter ��r� �see
Eqs. �10� and �27��, which defines the coarse-grained
strength of absorption/depletion/relaxation. For an isotropic
system, the probability of depletion per collision with the
boundary, p, is related to � via �37,40,41� ��r�=�de

3
2

D
	

p
1−p/2

where the Brownian particle moves with continuous step
sizes uniformly distributed in the interval �−	 ,	� for each of
the de directions during the time step. Inhomogeneity in ��r�
may arise through spatial variation in p and/or D /	. The
microscopic mechanism for the draining probability �p� will
affect the texture, the spatial profile, of ��r�, but we will
derive our main results without assuming a specific pattern
for ��r�. Using the standard bra-ket notation �42,43� the local
population distribution at time t is represented in terms of the
basis functions �	r
� as �r 	�
t����r , t�� and overlap integral
between two such functions �� 	��
 is equivalent to
�Vdr���r���r�. The basis functions �	r
� satisfy the or-
thogonal property: �r� 	r
=
�r−r��, where 
�r−r�� is the
de-dimensional Dirac-delta function with the normalization
�V
�r−r��dr=1 integrated over the pore volume V and r�
�V. In Sec. III, we consider the diffusion equation accord-
ing to which an initial state 	�
t=0 evolves and consider the
spectral property of the associated boundary value problem.
Specifics of pore shape variation are incorporated into more
generic spectral features of the modes. The varying degree of
break down for the second and the third conditions is then
systematically studied via the changes reflected on the spec-
tra for a range of values in � �Eqs. �1� and �15�� and the
dimensionless parameter

� =
�	
��r�	


�0
�

�	��r� − �0	

�0

, �3�

with �0 being the interfacial average of ��r�. Obviously,
�
��r�
=0. What are the main observable consequences for
allowing ��0 in a natural porous media? In this work, we
focus on the changes in the eigenvalue and the spatial mode
profile of the slowest mode treating � as the small parameter.
We point out that this was largely motivated through map-
ping our Helmholtz problem to that of Schrödinger problem
for the particle in a partially absorbing box in the imaginary
time domain and treating 
��r� as a perturbative potential
�44�. The mapping underscores the significance of the statis-
tics and symmetries of the modes, especially the ground
state, which are not as readily apparent in the traditional
Green’s function formalism. This then prompts us to ask
whether the effects should be more pronounced where the
inhomogeneity is commensurate with the variations in the

underlying boundary shape, which in turn affects the spatial
profile of the modes. As a corollary, it follows that the faster
modes, having little spectral overlap with the spatial varia-
tion in ��r� unless ��r� is self-affine, may be less sensitive
compared to their slower counterparts. These aspects should
be considered on an equal footing along with the diffusive
coupling �45–47� in affecting the spectral properties of the
problem as we will elaborate in Secs. III and IV. For a class
of experimental diffusion probes, parallels with the spectros-
copy of a quantum particle �44� yield useful insight and have
led to novel applications �48,49� even with �=0.

The organization of the rest of the paper is as follows: we
consider in Sec. III the case of a uniform depletion strength
�0 on the boundary and offer an expanded account of obser-
vations �Eqs. �13�, �16�, and �22�� that had been made earlier
�44� on the spectrum for a general boundary geometry with
uniform �. In Sec. IV, we further develop for the spatially
varying ��r�, establishing a set of fundamental relationships
linking the uniform and nonuniform cases through a pertur-
bative solution for the fractional changes in the eigenvalues
and their weights. Equation �60� represents the central result
of this perturbative approach. As a concrete example, we
apply the method for a spherical pore with a general angular
variation in ��r� in Sec. V and obtain solutions for a specific
binary 
��r� texture.

III. UNIFORM �

We start by considering the simpler case of a uniform
��r�=�0 and a general local diffusion tensor D. Introducing
the flux operator J,

J � − D · � , �4�

and the Hamiltonian operator H,

H � � · J = − � · D · � , �5�

the evolution of � as dictated by continuity follows

�t	�
 = − H	�
 , �6�

which formally links the slowest depletion rate of our
diffusion-relaxation problem with the ground state energy of
the analogous quantum mechanical system. �44� In real life
MR relaxometry, diffusion of polarized spin-carrying mol-
ecules suffers an additional depletion in the bulk of the fluid
if there exists a static field gradient. This dephasing may be
eliminated via an experimental technique and therefore we
neglect it for simplicity and consider only the depletion lo-
calized at the interface.

Let us consider a partially absorbing boundary,

�r	n̂�r� · J	�
 = �0�r	�
 for r � � , �7�

where n̂�r� is the unit surface normal vector at the boundary
point r pointing into the solid matrix. Time evolution of an
initial distribution 	�
0 can be expressed as a linear superpo-
sition of the set of eigenmodes �	�p

0
� �p=0,1 ,2 , . . .� of H,

	�
t = 
p=0

�

	�p
0
e−p

0t��p
0	�
0. �8�

Each eigenmode 	�p
0
 satisfies the equation
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H	�p
0
 = p

0	�p
0
 �9�

and the boundary condition at interface �,

�r	n̂�r� · J	�p
0
 = �0�r	�p

0
 for r � � . �10�

Multiplying Eq. �9� by ��p
0	, we obtain

��p
0	 � · J	�p

0
 = p
0, �11�

where the left-hand side, upon inserting the complete set of
basis functions I= 	r
�dr�r	, becomes the volume integration
of

� · ���p
0	r
�r	J	�p

0
� − �r	J	�p
0
 · ���p

0	r
 . �12�

Combined with the boundary condition, we obtain the fol-
lowing expression for the eigenvalue �44�:

p
0 = ���p

0	�0	�p
0

 + ��p

0	J · D−1 · J	�p
0
 , �13�

where ��¯ 

���¯d�. Employing the spatial representa-
tion, the right-hand side is equivalent to

�
�

�0	�p
0�r�	2d� + �

V
D���r�����p

0�r������p
0�r��dr ,

�14�

where � ,�=x ,y ,z. The result breaks the rate associated with
each eigenmode into two channels—a surface integral in-
volving �0 and a volume integral involving spatial variation
in the mode, J	�p

0
—and allows us to generalize the criterion
of slow- and fast-diffusion regimes �31� beyond the simple
pore geometry. For the spherical pore, Brownstein and Tarr
had shown that the dimensionless parameter �=�0a /D con-
trols the qualitatively distinct behavior for the time evolution
of �. Based on the observation that the distinction originates
from the degree of spatial fluctuation in the slowest mode
�see Eq. �22� below�, we generalize the criterion by defining
� parameter as the ratio of the two terms in Eq. �14� for the
slowest mode, 	�0

0
,

� �
��0

0	J · D−1 · J	�0
0


���0
0	�0	�0

0


=

�0

D

�dr���0
0�2

� d����0
0�2

. �15�

If the diffusive flux in the bulk dominates, ��→��, the slow-
est rate becomes independent of �0, while in the opposite
limit, we have 0

0→�0�d���0
0�2=�0S /V. We therefore iden-

tify the length-scale parameter

� �
�dr���0

0�2

� d����0
0�2

�16�

for given �0 and D as the relevant size that separates the
distinct regimes for an arbitrary pore shape. It is interesting
to note that � is reminiscent of the � parameter introduced
by Johnson et al. �50� in the context of electrical conductiv-
ity in general porous media.

Equation �13� may also be used to investigate the effect of
changes in �0 and D as induced via control parameters such
as the temperature, T. We obtain

dp
0

dT
= ���p

0	
d�0�T�

dT
	�p

0
� + 2���p
0	�0	
�p

0



+ ��p
0	

d

dT
J · D−1 · J	�p

0
 + 2��p
0	J · D−1 · J	
�p

0
 ,

�17�

where 	
�p
0
= d

dT 	�p
0
. Note that the slowest mode is the most

sensitive to
d�0

dT in the so-called fast-diffusion limit, where the
contribution from the surface-integral dominates over the
second term in Eq. �14�.

Here we also prove that the spectral weight of the excited
modes in an initially uniform distribution is closely related to
the spatial fluctuation of the slowest mode. To do so, let us
take the initial state

�0�r� =
1

�V
��r � V� , �18�

where ��x�=1 if the Boolean condition x is satisfied and 0
otherwise. Its subsequent time evolution follows

	�
t = 
q

all

sq
0e−tq

0
	�q

0
 �19�

with its spectral distribution sq
0 given by

sq
0 = ��q

0	�
0 =
1

�V�V
�q

0�r�dr . �20�

The total population follows

M�t� =
1

�V�V
�t�r�dr = 

q

all

	sq
0	2e−tq

0
. �21�

It can be shown that the fraction of the initial population
belonging to the excited modes �i.e., q�0� is

W0 � 
q�0

	sq
0	2 = V��	�0

0	2
 − 	��0
0
	2� , �22�

which means that the total weight for all excited modes is
directly proportional to the mean-square variance of the low-
est mode. It is straightforward to show using Eqs. �6� and �7�
that the slope at very early times, if the initial distribution is
uniform, is

−
1

M�t�
d

dt
M�t� =

�dr�r	H	�
t

�dr�r	�
t
=
� d��0�r	�
t

�dr�r	�
t
, �23�

which reduces to �0
S
V using the property that M�t� is uni-

form in the limit t→0. Note that the result applies also to the
case of disjoint pore systems if one understands S and V to
represent the total interface area and the pore volume, re-
spectively. However, the range in time during which this
assumption remains valid depends on the pore shape and is
not a universal property as it depends on the boundary ge-
ometry of a given system. The following sum rule also fol-
lows
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q

all

	sq
0	2q

0 = �0
S

V
�24�

and from the positive definiteness of q
0’s, it also follows that

0
0 is bounded,

�0
S

V
� 0

0. �25�

The properties described in this section are schematically
depicted in Fig. 2.

IV. NONUNIFORM �

In this section, we derive expressions for the changes in
the eigenvalues and their modes when the boundary condi-
tion varies from point to point. For this, we should introduce
another set of eigenmodes ��p� with eigenvalues �p� as op-
posed to the superscripted eigensystem ��q

0� and q
0’s for uni-

form ��r�=�0. Using the self-adjointed property of H, all
eigenvalues are shown to be real, and their associated eigen-
modes may be represented as real functions, as we choose to
do so in the following. Each 	�p
 now satisfies

H	�p
 = p	�p
 �26�

and the nonuniform boundary condition

�r	n̂�r� · J	�p
 = �r	��r�	�p
 for r � � . �27�

Following the steps that led to Eq. �13�, we obtain

p = ���p	��r�	�p

 + ��p	J · D−1 · J	�p
 . �28�

Our primary interest is now on the difference between the

two eigensystems, without and with spatial variations in �,
represented in terms of �	�q

0
�’s. Figure 3 shows the schemat-
ics of changed properties in comparison to the uniform �0
case, as we derive the details in this section.

With the definition of 
� and � given in Eq. �3�, we start
by assuming that the eigenmode 	�p
 of the inhomogeneous
case be expressed as a perturbation of the corresponding
mode in the homogeneous counterpart, 	�p

0
,

	�p
 = cp�	�p
0
 + 	
�p
� . �29�

One may further decompose 	
�p
 into two components,

	�p
 = cp�	�p
0
 + 

q�p

apq	�q
0
� + �I − P�	�p


� cp�
q

all

apq	�q
0
 + 	Qp
� , �30�

where P�q
all	�q

0
��q
0	 is a projection operator into the Hil-

bert space spanned by the set of eigenmodes �	�q
0
�. app=1

by definition. The normalization condition ��p 	�p
=1 gives

cp = �
q

all

apq
2 + �Qp	Qp
�−1/2

. �31�

	Qp
, which by definition should satisfy ��q
0 	Qp
=0 for all

q’s, represents the part of 	�p
 that cannot be accounted for
via a linear superposition of 	�p

0
’s. That 	Qp
 is not a null
function, despite the fact that one can realize a least-squares
fit approximation �51� with any given precision to an arbi-
trary function inside V, follows since the set ��p

0� satisfies a
boundary condition �Eq. �10�� while ��p� satisfies another
�Eq. �27��. Strictly speaking, any linear combination of �p

0’s,
without the 	Qp
, cannot satisfy the inhomogeneous boundary

FIG. 2. �Color online� A schematics of a typical evolution of a
population M with a uniform boundary condition with �0. At early
times, the slope matches that of �0S /V, and later times, it ap-
proaches that of the slowest eigenmode with 0

0 �each represented
by broken curves�. The spectral weight for the excited modes �W0�
is also indicated.

� � �

�

�

�

�

�

	




�

�

�
�
�

� � 
� � �� � �� � �� � �

�

� � �  � � λ0 �

� � �  � � λ0
0�

� �
�

FIG. 3. �Color online� Schematics for the difference between the
population evolution with uniform �0 and an inhomogeneous ��r�
with the finial slopes given by 0

0 and 0 as indicated by the broken
curves. W−W0 represents the change in the spectral weight
distribution.
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condition, while at the same time, the role of 	Qp
 is probably
secondary to q�papq	�q

0
, which needs to be verified. There-
fore, in the following, we first focus on getting aqp’s in terms
of q

0’s and the overlap integrals of 
��r� and �q
0’s. We then

evaluate 	Qp
 which satisfies

1

cp

��r�	�p
 − n̂ · J	Qp
 + �0	Qp
 = 0 �32�

on the boundary and is a solution to the inhomogeneous
equation,

�H − p�	Qp
 = 
q

�p − q
0�apq	�q

0
 . �33�

To be systematic, we obtain an approximate 	Qp,m
 with the
perturbative solution ap,q’s at the given stage �
�m with m
=1,2 , . . .� substituting for the inhomogeneous source term on
the right-hand side. It is assumed that 	Qp,m
→ 	Qp
 as m
→�.

Substitute Eq. �30� into Eq. �26� and multiply both sides
by ��q

0	,

p
0apq + ��q

0	H	Qp
 = papq. �34�

From the self-adjointedness of H and the boundary condi-
tion, we make the crucial observation,

��q
0	H	Qp
 = cp

−1���q
0	
�	�p

 �35�

�see Appendix A�, where

���q
0	
�	�p

 � � �q

0�r�
��r��p�r�d� . �36�

Using this, one can show

�p − q
0�apq = �

r

apr
�qr + 
�̃qp�S
V , �37�

where we introduce the surface overlap integrals 
�qr and

�̃qp

m ,


�qr

S
V � ���q

0	
�	�r
0

 , �38�


�̃qp
m

S
V � ���q

0	
�	Qp,m

 . �39�

It formally follows that

apq =
1

cp

�1 − 
pq�
p − q

0 ���q
0	
�	�p

 + 
pq, �40�

which, using Eq. �30�, gives a recursive equation for apq,

apq =
�1 − 
pq�
p − q

0 �
r

apr
�qr + 
�̃qp�S
V + 
pq. �41�

Upon first iteration and using the notation 
�̃qp
m associated

with the perturbative approximations 	Qp,m
, we obtain

apq = 
pq + �1 − 
pq��� 
�qp

p − q
0 +


�̃qp
1

p − q
0�S

V

+ �
r�p


�qr

p − q
0


�rp

p − r
0 + 

r�p


�qr

p − q
0


�̃rp
2

p − r
0

+ 
r�p


s�p


�qr

p − q
0


�rs

p − r
0aps��S

V�2� ,

providing a way for a systematic expansion in powers of 
�
�0

in a manner analogous to the diagrammatic expansion of a
particle interacting with the perturbative potential. Truncat-
ing the iterations at second order, we obtain

apq � 
pq + �1 − 
pq��� 
�qp

p − q
0 +


�̃qp
1

p − q
0�S

V

+ 
r�p


�qr

p − q
0


�rp

p − r
0�S

V�2

+ O�
�3�� �42�

since 
�̃rp
m 
�qr=O�Qp,m��
�2 or higher. To obtain a formal

solution in an algebraically closed form, we put p=q in Eq.
�37� and obtain

p − p
0 = 
�pp

S
V − 

q�p


�pq
�qp

q
0 − p

�S
V�2

+ 
�̃pp

S
V

+ 
q�p

�
�pq���q
0	
�	
�p



p − q
0

S
V� , �43�

where 	
�p
=q�papq	�q
0
+ 	Qp
 and therefore the last term

in Eq. �43� contributes terms of order O�
�3� and higher.
Keeping only up to second order in 
� and using the bound-
ary condition for 	Qp
, we transform Eq. �43� into the follow-
ing alternative form:

p − p
0 = 
�pp

S
V − 

q�p


�pq
�qp

q
0 − p

�S
V�2

−
1

�0
�Spp − Tpp�

S
V ,

�44�

where we define

Sqp

S
V �� �q

0�r��
��r��2�p
0�r�d� �45�

and

Tqp

S
V �� �q

0�r�
��r�n̂ · JQp�r�d� , �46�

and take the p=q case. Note that Spp assumes the form of a
self-interaction which, through the mixed-boundary condi-
tion, is mitigated by the Tpp term. We show in the following
�Sec. V� that, for the spherical pore geometry, these two
terms largely cancel each other. It suggests that the reduction
in p gained through the self-interaction term �Spp� is lost
due to the rapid bending of the mode profile �Tpp� near the
boundary.

We also have the generalization of the result we obtained
for the spectral weight for the excited modes �Eq. �22��,
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W = �
q�0

	sq
0	2 + V

q�0

a0q
2 ��
�q

0�2
 + V�
Q0
2


− 2V���0
0


q�0
a0q��q

0
 + ��0
0
�Q0
 + 

q�0
a0q��q

0


��Q0
��/�
q

a0q
2 + �Q0	Q0
� , �47�

where we used the orthogonality properties of the �q
0 and Q0

and defined ��
A�2
� 1
V�VA2dr− � 1

V�VAdr�2 and �A

� 1

V�VAdr, where A stands for Q0, �q
0, or �0

0.
To make further progress beyond Eq. �43�, we need to

solve for 	Qp
 and its surface integrals with respect to

��r��q

0�r�. Assuming that 	�p
0
 and p

0 are known for �0,
obtaining 	Qp
, apq, and p in a mutually consistent manner
constitutes the complete solution of the problem which is not
possible for a general pore geometry. Instead, we are inter-
ested in how changes in observable properties such as the
slowest eigenvalue and its spectral distribution depend on the
texture of 
��r� and the spatial profile of the relevant eigen-
modes that reflect the underlying boundary geometry via the
� parameter in a perturbative scheme based on small �.

As noted with Eqs. �42� and �44�, if we restrict ourselves
to the second-order perturbation evaluation of 
p, we need
only to construct 	Qp,1
 �i.e., 	Qp
 evaluated using the first-
order perturbative solutions� as the contribution of Qp,m to

p for m=1,2 , . . . is ���q

0	
�	Qp,m

�O�
�m+1� or higher.
We noted earlier that 	Qp,1
 arises from a distribution of
source that is the remnant of 
��r� as qapq	�q

0
 alone fails to
account for its effect completely. Using Eqs. �33� and �37�,
we obtain the following inhomogeneous Helmholtz equation
for Qp,1�r� to lowest order in �:

�H − p�	Qp,1
 = 	fp,1
 , �48�

where the source term is now given by

	fp,1
 �
1

cp


q

all

	�q
0
���q

0	
�	�p
0

 . �49�

By extending the surface-localized function 
��r� into a thin
shell ��V	� of thickness 	 lining the interface in the pore
space and ensuring that 	��D /p

0, �D /q
0, we define


�	�r� = �	
��r�� for r � �V�r̂� � �r − r��,r� � ��	

0 otherwise
�
�50�

to show that Eq. �49� is equivalent to

	fp,1
 = lim
	→0


q

all

	�q
0
��q

0	
�		�p
0
 = P
�	�p

0
 , �51�

the surface-localized source function 
��r��p
0�r� projected

onto the space spanned by the eigenmodes �	�p
0
�. In Appen-

dix B, we show that 	Qp
 is given by the superposition of
waves Gp emanating from the residual charge �p,res,

	Qp
 = �1 + Gp
��−1Gp	�p,res
 , �52�

where Gp is the Green’s function as defined in Eq. �B4�. For
the second-order perturbation, the residual charge is defined
as

	�p,res
 = P
�	�p
0
 − 
�P 1

cp

	�p
 , �53�

which is not necessarily limited to be on the interface. In the
perturbative scheme, 	�p
 should now be replaced with
qapq	�q

0
+ 	Qp,1
. The surface overlap integral of 	Qp
 and

�̃qp �Eq. �39�� can now be put into the following form:


�̃qp

S
V =� � d�1d�3� dr2�q

0�r1�
��r1�Gp�r1,r2�

��P�r2,r3�
��r3��p
0�r3�

− 
��r3�P�r3,r2�
1

cp
�p�r2�� + O�
�3� . �54�

Closed solutions for Gp and the residual charge for a general
pore shape and 
��r� are not readily available, but evaluating
Gp out of the basis set ��q

0� and using orthogonality of ��q
0�,

we further obtain

	Qp
 = − 
q


r�p

	�q
0


q
0 − p

��q
0	
�	�r

0
apr, �55�

which indicates that the requirement ��q
0 	Qp
�0 is obeyed

in O�
�2�. Qp�r� may be interpreted as the potential field
induced by the residual charge distribution �p,res and its con-
tribution to the eigenvalue p is the interaction between the
potential and the surface charge distribution associated with
each mode, 
��r��q

0�r�. The potential is subject to a destruc-
tive interference when �p,res�r� has a rapid spatial fluctuation
and further weakened due to averaging over the diffusion
length �p�� D

p
0 �Eq. �B4� in Appendix B�. The leading order

contribution of Qp to p, 
�̃pp of Eq. �43� is then


�̃pp

S
V = − 

q

r�p

apr���r
0	
�	�q

0


���q

0	
�	�p
0



q
0 − p

. �56�

Finally, we arrive at a compact expression


p = 
�pp

S
V − 

q�p


�qp
2

q
0 − p

�S
V�2

+� 
��r��p
0�r�Qp�r�d�

�57�

for the change in eigenvalue valid up to second order in 
�.
For the slowest mode, we conjecture that 	Qp=0
, as the sur-
face source 
��0

0, is significantly weakened via convolution
and commutation with P and the oscillatory kernel of wave-
length �0. Taking p=0, we obtain the fractional shift in the
decay rate of the slowest mode,
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0

0
0 =


�00

0
0

S
V − 

q�0


�0q
�q0

0
0�q

0 − 0
0�
�S
V�2

−
1

0
0

q

r�0

�

�0r

r
0 − 0

0
�rq

�q0

q
0 − 0

0�S
V�3

+ ¯ . �58�

Note that the last term is of order O�
�3� unless q=0. There-
fore, taking only the q=0 contribution and rearranging,


0

0
0 =


�00

0
0

S
V − 

q�0


�0q
�q0

0
0�q

0 − 0
0�
�S
V�2

+
1

0
0


�00


0

r�0


�0r

r
0 − 0

0
�r0�S
V�3

+ O�
�3� . �59�

Due to the presence of 
0 in the denominator of the last
term, 	Q0
 therefore makes a second-order correction to the
first term only if 
�00�0. Otherwise, its effect vanishes to
second order in 
�. We thus arrive at


0

0
0 =


�00

0
0

S
V�1 + 

q�0


�0q
�q0

0
0�q

0 − 0
0�
�S
V�2�

− 
q�0


�0q
�q0

0
0�q

0 − 0
0�
�S
V�2

+ O�
�3� . �60�

The fractional change in the weight for the excited mode
�Eq. �47�� can now be simplified,

W − W0

W0 �
q�0� 
�q0

0
0 − q

0

S
V�2

��
�q
0�2


��
�0
0�2


, �61�

noting that �Q0
�0 and �
Q0
2
��Q0

2
�O�
�4�. We also ex-
pect that the fluctuations induced by 
� in the bulk of the
pore when averaged over the pore volume will tend to van-
ish, �qa0q�q

0
�0, leaving the positive definite term above.
�More precisely, one can show that these cancellations arise
rigorously from the normalization condition �Eq. �65��.� This
shows that as the boundary condition becomes more inhomo-
geneous, the excited modes gain in weight in proportion to
their mean-square fluctuation, ��
�q

0�2
, but also weighted
down by the 1 / �0−q

0�2 factor and 
�q0
2 , overlap between �q

0

and 
��0
0. The overall effect, however, is second order in 
�

at most ��a0q
2 �. These results are schematically summarized

in Fig. 3.
Following the steps taken for the uniform case, one can

also show that the initial slope of population decay with a
finite � satisfies

lim
t→0

− 1

M�t�
d

dt
M�t� = �0

S

V
+
� 
��r��t�r�d�

��t�r�dr
. �62�

As the second term vanishes for sufficiently short t when
�r 	�
t is still uniform, it suggests that the initial slope may
remain robust. Note however that the way the eventual de-
viation of the initial slope sets in may be different from that
of the uniform �0 case �even though the asymptotic value

remains the same at �0S /V� depending on how the depletion
of population proceeds.

We also note that the sum rule that we found for the
uniform case �Eq. �24�� retains the same form and can be put
into the form


q

all 	sq
0	2�1 +


sq

sq
0 �2

q
0�1 +


q

q
0 �

1 + 2r�q
arq

2 + V�Qq
2


= �0
S

V
�63�

with 
sq= �
�q 	�
0=r�qaqrsr
0+ �Qq 	�
0. Here sr

0 is the
overlap integral of 	�r

0
 with the initial distribution �defined
earlier in Eq. �20�� and 	
�q
 is as defined in Eq. �30�. Com-
bining this with Eq. �24� and taking the leading order in 
�
only, we have the following condition that has to be satisfied:


q

all

q
0sq

0�
sq +
1

2
sq

0
�qq� = 0. �64�

Note that it is in fact simply expressing the rigidity of the
initial slope against the variational effect of 
�. To be com-
plete, we also note that


q

all

sq
0
sq = 0, �65�

which follows from the normalization requirement.

V. SPHERICAL PORE

As a solid example, let us consider the case of an isolated
spherical pore. Although it is a three-dimensional �3D� ob-
ject, much of its MR response reduces to that of a one-
dimensional system with a single controlling length scale.
This is often overlooked and its properties have been casu-
ally interpreted as generic to pores with complex three-
dimensional morphology. To be more concrete, we sketch
out analytic expressions and numerically evaluate them for
some of the properties for the spherical pore despite this
reservation. As an intermediate step, extension of the meth-
ods developed here to nonspherical pore geometry �52�
would be useful. Angular variations in the boundary condi-
tion bring in aspects of the extra dimension and length scales
more explicitly �such as the terms contributing to Eq. �30�
with L�0� and it would be interesting to study the effect on
� �Eq. �15�� of �0

0 as it varies along the boundary of non-
trivial geometry. Yet, to make an impact on 
0 /0

0, their
effects need to survive the angular averaging; furthermore,
the associated eigenmodes should have sizable presence on
the boundary of the pore. Therefore, one should approach
with discretion the conclusions we draw from the spherical
pores in the following.

The eigenmodes for the uniform �0 inside the spherical
pore are separated into the radial part �jL�kr�� and the angular
part �YLM�� ,���. Instead of the generic index q, we employ
the set of indices �n ,L ,M� that characterize the eigenmode
associated with the eigenvalue nL

0 �DkL�n�2 in terms of its
radial and angular parts,
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�n,L,M
0 �r� = cn,LjL�kL�n�r�YLM��� , �66�

where jL�kL�n�r� is the spherical Bessel function associated
with the angular momentum L. �Note that the modes defined
thus are complex. However, the eigenvalues are all real, and
the results so far remain valid.� kL�n� denotes the radial func-
tions each associated with the nth nodal positive solution of

�0jL��L�n�� + DkL�n�jL���L�n�� = 0, �67�

where the dimensionless parameter �n=kL�n�a and cn,L is the
normalization constant so that �V	�n,L,M

0 �r�	2dr=1. Since
�d�YLMYL�M�

� =
L,L�
M,M�, it follows �53,54�

cn,L =
�2�L�n�

��� − 1
2�2 + �L�n�2 − �L + 1

2�2

1

jL��L�n��
a−3/2.

�68�

In the analysis of Brownstein-Tarr �31� and its subsequent
application to a variety of porous media, all modes with L
�0 are excluded from consideration because all relevant in-
tegrals vanish under the uniform boundary condition and the
isotropic initial state �L=0, M =0�. Here, we consider the
nonuniform 
��r� parametrized via its overall strength � and
the angular variation in the sphere of radius a, f���,


��r� � ��0f��� , �69�

with which the modes with a finite angular momentum con-
tribute to 
0 to further slow down the slowest mode. Note
that, in a similar manner, these higher eigenmodes play in-
creasingly significant role as the pore geometry further devi-
ates and acquires more asymmetry and heterogeneity. Due to
the L=0 symmetry of the mode 	�0

0
, the first order term in
Eq. �58� vanishes, and for the second-order term, only states
with the L, M components that are present in the 
�r� profile
contribute. Thus for the spherical pore, we have, up to sec-
ond order in 
�,


0

0
0 =


0,a

0
0 +


0,b

0
0 , �70�

where

0,a

0
0 is the contribution from coupling to the eigen-

modes �	�q
0
��q�p� and


0,b

0
0 coming from 	Q0
.

Let us examine the two second-order contributions one by
one. The first term,


0,a

0
0 , is


0,a

0
0 � − 

L,M,n
c1,0

2 cn,L
2 j0�k0�1�a�2jL�kL�n�a�2

�
���0�2�0,L;M

2

0
0�n,L

0 − 0
0�

a4

4�
, �71�

where we define

�0,L;M �� d�f���YLM
� ��� �72�

as the YL,M component in the harmonic expansion of 
�.
Introducing the slowest rate for �→�,

� = D��

a
�2

, �73�

and using Eq. �68� and �L�n��kL�n�a, we can put this into a
form which displays its dependence on � explicitly for an
arbitrary angular variation in 
�,


0,a

0
0 � − �2�2 1

�5 
L,M,n

�0,L;M
2 �

0
0

�

�n,L
0 − 0

0�

�
�L

2�n�

�� − 1
2�2 + �L

2�n� − �L + 1
2�2

�0
2�1�

��� − 1� + �0
2�1�

.

�74�

Let us consider a simple case with


��r� � ��0f��� = ��0�− 1 �� � �/2�
1 �� � �/2� � �75�

in which only L=odd modes with M =0 are present. Figure 4
shows the eigenvalues found for odd L up to 102, with n
�200 for each L. Figure 5 shows how much individual
eigenmode with L, n contributes to 
0, while Fig. 6 shows
the rapid convergence properties as the number of included
mode increases. It also shows the partial contributions from
all modes with a given L or n values.

For small ��1, 0
0 /��� and � / �n,L

0 −0
0� becomes in-

dependent of �, and therefore one can see 
0,a /0
0��,

while for �→�, we note that 0
0 /� becomes independent of

�; therefore

FIG. 4. An example of eigenvalues kL�n� for odd angular mo-
menta L=1,3 , . . . ,99 shown for n up to 200 for �=0.4161. The
solid line �kL�1�a /��0.51L0.9� is just a guide for the eyes. Shown
in the inset is the angular factor �0,L;M

2 �Eq. �72�� for the hemi-
spherical ��r� variation.
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n

�

n,L
0 − 0

0

�L�n�2

�� − 0.5�2 + �L�n�2 − �L + 0.5�2 �
1

�
�76�

so that 
0,a
0 /0

0��−1. Figure 7 and Table I show the numeri-
cally evaluated 
0,a /0

0 for a wide range of � with the hemi-
spherical 
� which bears out this observation. For a qualita-
tive description, this may be roughly described as


0,a
0 /0

0 �
2.3

� + 4
�

�2. �77�

The result suggests that, at least for the spherical pore, the
system is most sensitive to the inhomogeneity in the inter-
mediate range �� �0.5,10� in its second-order contribution.
Incidentally, this is where the two terms in the rate �as we
noted earlier in Eq. �13� and also in �44�� are comparable and
the system becomes most accommodating of the perturbation

�. If the former dominates �i.e., ��1�, it becomes too
costly for the slowest mode to deform itself from quasiuni-
formity to accommodate 
�, while in the opposite case, the
mode amplitude near the boundary is severely reduced �i.e.,
j0�k0�1�a�, jL�kL�n�a�→0�, and 
0 becomes insensitive to a
fractional change in 
�.

More generally, for an eigenmode of angular variation
with �L ,M� to contribute at least a fraction � of 
 /0

0, the
strength of the corresponding component in the harmonic
variation in 
�, �0,L;M would have to meet

c1,0
2 cn,L

2 j0
2�k0�1�a�jL

2�kL�n�a�
���0�2�0,L;M

2

0
0�n,L

0 − 0
0�

a4

4�
� � , �78�

which can be used to define the region of relevance in the
�L ,n� plane for numerical evaluations. Even for pores with-
out spherical symmetry, this criterion may be generalized
using the strength of the associated modes averaged over the
interface that should replace cn,L

2 jL
2 and c1,0

2 j0
2. It should be

emphasized however that if the first-order contribution sur-
vives, this second-order effect may become overshadowed.

Evaluation of the second term of Eq. �70�,

0,b

0
0 , is more

involved for an arbitrary pore geometry, as we need to evalu-
ate first the P projection of the surface-localized function

��r� and further its overlap integral with Gp=0�r1 ,r2�, nei-
ther of each is available in a closed form. For spheres, how-
ever, we can clearly see from Eq. �59� that it should make a
vanishing contribution as ���0

0	
�	�0
0

=0 as �r 	�0

0

�Y00���. Comparisons to an exact solution �55� and numeri-
cal simulations �56� verify that


0,b

0
0 = 0 if � d��0

0
��r��0
0�r� = 0 �79�

for the second-order contribution of Q0 to 
0 in spherical
pores with an arbitrary 
��r�. At the same time, it is plau-
sible that there exist boundary shapes for which �0

0�r� devel-
ops a significant angular variation so that ��0

0
��0
0d��0. In

such a case, the first-order contribution in Eq. �60� would
dominate. 	Qp
 only contributes to its higher order modifica-
tion. It is instructive to examine how the projection P and the
residual source 	�0,res
 behave in more detail.
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Log10 �∆Λ0,a�n,L��∆Λ0,a�1,1��

FIG. 5. Contribution to 
0,a from each eigenmode with radial
node index n=1,2 , . . . and angular momentum L�=1,3 ,5 , . . .� for
�=0.416. The contour levels represent base 10 logarithm of indi-
vidual contribution 
0,a�n ,L� normalized to the maximum value

0,a�1,1�=0.0323.
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FIG. 6. Upper panel: convergence of numerically evaluated

0,a as total number of modes increases. All eigenmodes in the
ranges 1�n�200 and 1�L�101 were found, and their individual
contribution 
0,a�n ,L� evaluated and sorted according to their
magnitude. The graph shows i

N
0,a�i� as the number of included
modes N increases. Lower panels: dependence of partially summed

�n ,L� on n�=1,2 , . . .� and L for �=0.416. The left panel shows
contribution from all modes with same n summed over L�101.
The right panel shows contribution with same L values summed
over all n�200. The solid lines are guides for the eyes with �n−2

and �L−3, respectively.
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Let us first consider the numerical evaluation of the pro-
jected 
�, Pf��� of the binary distribution �Eq. �75��. For a
delta profile for 
��r� in the radial direction with �

�r
��r�
=0 at the boundary, P
�, as evaluated numerically with a
large number of �q

0’s, may approach 
� with an arbitrary
precision �51� and yet fail to meet the zero-slope condition
since all ��q

0�’s have a finite slope on the boundary unless
�0=0. This discrepancy may hardly impact the accuracy of
the surface integrals �d��q

0
��r��0
0 in practice. Discrepancy

between 
� and its projection P
� may become pronounced
along the �de−2� dimensional manifold �i.e., the equatorial

line �=� /2 in the hemispherical example� across which
sharp changes in 
� occur at length scales smaller than �p.
How this translates into an enhanced contribution to 
0,b
can only be addressed numerically for a general 
��r� tex-
ture. In the following, we investigate how the numeric
P
��r� representation behaves as a series sum over a finite
number of modes for the simple spherical model.

Figure 8 shows how the radial delta-function-like profile
is approached with progressively larger number of radial
modes �with cutoffs kmax as indicated� averaged over �
� �0,� /2�. The oscillatiotory tail is due to the finite cutoff.
The inset shows details near the boundary for larger cutoff
values. With only L=1 modes included, the value on the
boundary converges to the value of �0.75, significantly
short of 1.0. Inclusion of L�1 modes remedies this, but its
convergence is significantly impeded as � increases.

Figure 9 shows how the angular profile �Eq. �75�� is re-
produced with progressively larger number of angular modes
�with cutoff Lmax as indicated�. The radial cutoff is set at
kmaxa /�=1000. In the hemispherical case, a moderate value
of Lmax seems sufficient to achieve an acceptable conver-
gence although we observe that its rate slows down as �
increases.

We monitored the following dimensionless parameter as a
measure of convergence for the P projected 
� to the actual

� �as an overlap integral with �p�r� over the pore volume�
in contributing to 
p,b:

cp �
�dr2q�q

0�r2�� d�3��
��r3���q
0�r3�
��r3��p

0�r3�

� d�2��
��r2��
��r2��p
0�r2�

,

�80�

where ��x� is the heavy side step function, =1 for x�0 and
=0 otherwise. Its convergence is largely determined by the

FIG. 7. Second-order contribution to the fractional shift of the
slowest relaxation rate �
0,a /0,0� for the hemispherical binary dis-
tribution of ��r� for the spherical pore at various values of �. Up to
20 000 modes were included to ensure good convergence for all �
values. The contribution peaks around ��2.

TABLE I. Numeric values for k0, c1,0, j0�k0a�,
0

0

�
, and


a

0
0 for �=0.01 to 200 obtained using summation

up to 20 000 eigenmodes.

�
k0�1�a

� c1,0 j0�k0�1�a�
0

0

�


a

0
0

1
�2

0.0104 0.056176 0.013868 0.99482 0.003158 0.008125

0.0416 0.112001 0.013997 0.97949 0.012544 0.03250

0.1040 0.17599 0.0142543 0.949825 0.030973 0.078438

0.2081 0.246325 0.014680 0.90314 0.060516 0.14750

0.4161 0.341266 0.015517 0.81914 0.116281 0.26125

0.6242 0.409545 0.016331 0.74606 0.16810 0.34750

0.8323 0.463496 0.017118 0.68225 0.214369 0.41107

1.4565 0.57835 0.01929 0.53379 0.334489 0.50800

2.0807 0.65411 0.0211704 0.430702 0.42786 0.52330

3.1210 0.736232 0.0236819 0.318651 0.542038 0.48001

4.1614 0.788449 0.025566 0.24899 0.620944 0.417812

10.403 0.906404 0.030683 0.10178 0.820836 0.196594

20.8069 0.95228 0.0329654 0.0499212 0.90684 0.096940

41.6138 0.976014 0.034195 0.02455 0.952603 0.0465482

208.07 0.995194 0.035206 0.004829 0.990411 0.0076395
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spectral weight of modes ��q�p
0 �r�� present in 
�r��p

0�r�. To
be systematic, we define the partial projection operator
PL,nm

�n
nm	�n,L,0
��n,L,0	 that projects onto a subspace

spanned by the first nm radial modes for each L. Panels �a�
and �b� of Fig. 10 show the angular average of the partial
projection L

LmaxPL,nm

�	�p

0
 for values of Lmax and nm

�equivalent to kmax�. In panel �b�, small but rapid oscillations
observed in radial direction are immaterial as they are aver-

aged out when convoluted over the pore volume. As the con-
vergence of cp is largely controlled by the spectral composi-
tion of the source profile, f���, this may no longer hold for a
complex 
� texture. �57�

For the hemispherical 
�, cp for p=0 becomes

cp=0 = lim
nm→�


L

	m

�
���/2

d�2� d�3�r2	PL,nm
	r3


�
���/2

d�2

, �81�

where 	m is the radial width of the projected delta peak on
the boundary for the given nm and is given by the quarter of
the wavelength associated with the mode with kL�nm�: 	m

= 1
4

2�
kL�nm� . Panel �c� of Fig. 10 shows this cp=0 as we progres-

sively increase the number of modes in its numerical evalu-
ation for both large and small values of �. It is worth noting
that while the convergence of cp �and therefore 
0,b� is quite
slow, the series sum for 
0,a is much more rapid due to the
factor of 1

q
0−0

0 �in Fig. 5�. In a numerical simulation that
employs random walkers with a fixed step size, one would be
effectively truncating the series summation at a wavelength
comparable to the step size. The apparent strength of � in
such simulations may then deviate from what corresponds to
a fully converged cp in the figure. Our result provides a guide
on how one may correct for such artifacts in a systematic
manner. Numerical simulations employing large number of
random walkers, which use continuous step sizes to alleviate
such an issue, are underway for various types of pores.

VI. CONCLUSION

We considered the consequence of the spatially varying
boundary condition �D�r�n̂ ·�+��r����r , t�=0 for the spa-
tiotemporal evolution of the local density ��r , t� of an at-
tribute carried by diffusing entities. It has direct relevance on
the local magnetic �polarization� density of fluid molecules
in the magnetic resonance relaxometry widely used for vari-
ous porous media for their characterization. We examined the
spectral properties of the governing Helmholtz equation and
their relationship to the boundary geometry and the texture
of its controlling parameter ��r�. Using only the general
properties of the modes and the boundary conditions they
satisfy, we showed that each eigenvalue can be expressed as
a sum of two parts �Eq. �13��: one is in the form of a surface
integral directly involving ��r� and the other being a volume
integral which involves the diffusive flux of the mode. The
direct relationship between the slowest eigenvalue and the
surface-to-volume ratio of the pore is recovered when the
first term dominates over the second, and we derived the
generalized parameter � �Eq. �15�� that quantifies the bound-
ary between distinct regimes with observable consequences
in the evolution of an initial distribution. We also showed
that the weight of the slowest decay mode in the overall
relaxation of the attribute is diminished in direct proportion
to the rms spatial fluctuation of the mode �Eq. �22��. Tradi-
tionally, the weight for all modes other than the slowest is
often interpreted as representing small pores, a notion in-

FIG. 8. Radial profile of the partially projected �-averaged
�PL,nm


�
��r� �the curves are multiplied by � r
a �2 1

4
2�

kmaxa
for normal-

ization� near the pore edge where L=1 only and nm=kma /� as
indicated for each curve up to 800 �see inset for blowup for large
nm�. The height of the normalized curves at r /a=1 converges to-
ward 0.750 75 for �=0.4 in this example. With inclusion of more
modes with L�1, the height approaches the value of 1.0 gradually
as one would expect for a perfect representation. The convergence
becomes progressively slower as � increases �see Fig. 10�.

FIG. 9. Strength of the projected PL,nm

� around �=� /2 at r

=a across which it should go from −1.0 to 1.0 in a stepwise fashion.
The curves show progressive refinement as we increase the number
of included modes by increasing the maximum L up to 399
�kL�nm�a /� was fixed at 1000 for each included L�.
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creasingly invalid as the pores become extended through dif-
fusive coupling and acquire complex geometry. We clarified
issues regarding the time-domain evolution of ��r , t� which
originate from such inadequate interpretation of the spectral
distribution, sq

0 �Eq. �20��. Building on this, we then intro-
duced spatially varying ��r� and obtained the perturbative
solution in �= �	
�	
 /�0. The results show how the effect of

��r� manifests itself as the shift in the lowest eigenvalue
and is controlled by overlap integrals of 
��r� with the asso-
ciated mode �Eq. �36��. We also showed and verified numeri-
cally that the initial slope of the overall depletion remains
robust �see Eq. �64��. These results were derived without
making any specific assumption about the pore geometry,
relying only on the self-adjointedness and boundary condi-
tions of the problem. We show that the first-order contribu-
tion vanishes when the base system has symmetry so that the
overlap integral with the mode �p

0, ��p
0�r�
��r��p

0�r�d�=0.
When the boundary geometry varies in a complex manner,
the slowest mode �0

0�r� itself acquires significant spatial
variation even under the uniform �0, and the incommensu-
racy between 
��r� and �0

0’s may result in a significant non-

zero first-order contribution �Eq. �57��, which overshadows
the second-order effect. In the opposite limit, where the tex-
ture of 
��r� is such that its variation occurs on length scales
much shorter than the pore-geometrical length scale � �Eq.
�16��, the effect of such finely inhomogeneous 
� should be
muted via diffusive averaging out. This is the case consid-
ered by Valfouskaya et al. �38� which considered a texture
with a random variation uncorrelated beyond the voxel size,
much smaller than the typical grain size, in a stochastically
generated 3D porous medium. Our numerical simulations on
random glass bead packs with similar textures of 
� also
yielded results consistent with these observations. �41� To-
ward the opposite limit, we applied out theory to a case
where the impact of a finite � may be most pronounced �Sec.
V�. Extensive numerical analysis including up to 3�106

eigenmodes was performed for the simple case of a spherical
pore for a wide range of �=�0a /D. We propose that the
fractional change in the slowest eigenvalue is the most effec-
tive probe into variations in the boundary condition. We ex-
amined how much each of the eigenmodes contributes to the
change in the slowest rate �Fig. 5� and obtained the overall
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FIG. 10. Convergence of the projected 
��0
0 to the actual. Panel �a� shows that the value of the partial projection �L=1 modes only� with

�=200, averaged over the hemispherical shell, approaches �0.746, falling short of the expected 1.0 even after summing over 40 000 radial
eigenmodes. Panel �b�, which shows the radial profile of the projected 
��0

0 for �=0.4, indicates that good convergence is achieved when
modes with L up to 15 or more are included. Panel �c� shows how the convergence cp=0→1.0 slows down as � increases. With �=200, even
after including up to 3�106 modes, the convergence is not quite complete.
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second-order contribution for a wide range of � �Fig. 7�. The
latter is observed to peak around the value of ��2.0 and
follows roughly �� and �1 /� at either end. Our result pro-
vides a useful theoretical framework and quantitative bounds
for more complex situations addressed mainly through nu-
merical simulations �38,39,41�. Further development through
comparison to exact solution �55� and systematic numerical
simulations �56� are underway.
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APPENDIX A

Here we show that

��q
0	H	
�p
 − �
�p	H	�q

0
 = cp
−1���q

0	
�	�p

 , �A1�

where 	�q
0
 is an eigenmode with the uniform boundary con-

dition, 	�p
 is an eigenmode with the inhomogeneous bound-
ary condition, cp is its normalization constant with 	�p

=cp�	�p

0
+ 	
�p
�, and H=� ·J with J=−D ·�. For notational
brevity, we choose the representation in which all the eigen-
modes are real functions. We start by putting the first term on
left-hand side as

�
V

�� · �q
0�r�J
�p�r� − �J
�p�r�� · ��q

0�r��dr �A2�

and the second term as

�
V

�� · 
�p�r�J�q
0�r� − �J�q

0�r�� · �
�p�r��dr �A3�

and using Gauss’s theorem to put the left-hand side into

�
�

��q
0�r�n̂ · J
�p�r� − 
�p�r�n̂ · J�q

0�r��d� . �A4�

Substituting 
�p�r�=cp
−1�p�r�−�p

0�r�, the integrand becomes

�q
0�r��n̂ · J

�p�r�
cp

− n̂ · J�p
0�r�� − ��p�r�

cp
− �p

0�r��n̂ · J�q
0�r� ,

which upon using the boundary conditions turns Eq. �A4�
into

cp
−1�

�

�q
0�r�
��r��p�r�d� . �A5�

APPENDIX B

Here we derive the particular and homogeneous solutions
for 	Qp
 at a given stage in the perturbative iteration and
show how Qp is related to 
� and 	�p

0
. We start by noting
that Qp�r� is the solution to the inhomogeneous Helmholtz
equation

�H − p�	Qp
 = 	fp
 �B1�

for the 	Qp
 function, where p is the perturbative eigenvalue
consistent with the boundary condition as satisfied by the
solution from the previous stage; fp�r� is given accordingly
in Eq. �33�. The boundary condition that should be satisfied
by Qp is

1

cp

��r�

q

apq�q
0�r� − n̂�r� · JQp�r� + ��r�Qp�r� = 0.

�B2�

Using the projection operator P=q	�q
0
��q

0	 onto the Hilbert
space spanned by �	�q

0
�, 	Qp
 is related to 	�p
 via

	Qp
 =
1

cp
�I − P�	�p
 �B3�

from which it follows that P	Qp
=0. Our aim is to seek a
formal solution for Qp�r� using the Green’s function ap-
proach. Consider the following Green’s function,

�H − p�Gp�r,r1� = 
�r − r1� . �B4�

We consider its representation in the basis functions of an
eigensystem �	�q
� that satisfies

�H − 	q�	�q
 = 0 �B5�

and the general condition

��0 − n̂�r� · J��q�r� = ��r��q�r� �B6�

on the boundary with the function ��r� to be chosen for
convenience. Choice of ��r�=−
��r� amounts to solving for
��q�, while the lowest order perturbation would amount to
the choice of ��r�=0.

The Green’s function Gp may now be given in terms of
	�q
,

Gp�r,r�� = �r	
q

	�q

1

	q − p
0 ��q	r�
 , �B7�

and it satisfies the boundary condition

��0 − n̂�r� · J�Gp�r,r1� = ��r�Gp�r,r1� . �B8�

To obtain 	Qp
 as a perturbative solution for the source func-
tion fp and Gp, we multiply Eq. �B1� by Gp�r1 ,r� from the
left side and integrate over r to get

GpH	Qp
 − pGp	Qp
 = Gp	fp
 . �B9�

Using Stoke’s theorem, this becomes

�HGp�	Qp
 + Gp		J	Qp
 − �JG�		Qp
 − pGp	Qp
 = Gp	fp
 ,

�B10�

where 		 indicates a surface integral. Replacing �HGp�
=pGp+ I and using the boundary conditions for Qp �Eq.
�B2�� and Gp �Eq. �B8��, after rearranging, we get

�I − Gp		�
��r� + ��r���	Qp
 = Gp	�p,res
 , �B11�

where we introduce the residual source,
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	�p,res
 � 	fp
 − 
q

apq
�	�q
0
 . �B12�

The general solution for 	Qp
 admits possible addition of
the solution, 	Qp

h
, for the homogeneous counterpart of Eq.
�33�. We now show that 	Qp

h
=0 on physical grounds. First,
note that the homogeneous equation for 	Qp
 and the original
problem for 	�p
 become identical. The same applies to the
boundary condition. This suggests that we may take the ho-
mogeneous solution 	Qp

h
 to be identical to 	�p
 up to a con-
stant factor �, 	Qp

h
=�	�p
, with � to be determined by con-
sistency requirements

��P	�p
 + 	Qp
p
 + 	Qp

h
� = 	Qp
h
 �B13�

and the boundary condition

�− n̂ · J + �0��	Qp
p
 + 	Qp

h
� + 
��p = 0, �B14�

where 	Qp
p
 is the particular solution of Eq. �B11�. Since 	Qp

p

term should vanish by its construction and replacing 	Qp

h

with �	�p
 on the left-hand side turns the boundary condition
into

�1 + ��
��r��p�r� = 
��r��p�r� , �B15�

which therefore requires �=0, i.e., we should take 	Qp
h
=0.
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